On the geometry of Riemannian manifolds with a Lie structure at infinity

نویسندگان

  • Bernd Ammann
  • Robert Lauter
  • Victor Nistor
چکیده

A manifold with a “Lie structure at infinity” is a non-compact manifold M0 whose geometry is described by a compactification to a manifold with corners M and a Lie algebra V of vector fields on M subject to constraints only on M rM0. This definition recovers several classes of non-compact manifolds that were studied before: manifolds with cylindrical ends, manifolds that are Euclidean at infinity, conformally compact manifolds, and others. It hence provides a unified setting for the study of these classes of manifolds and of their geometric differential operators. The Lie structure at infinity on M0 determines a complete metric on M0 up to bi-Lipschitz equivalence. This leads to the natural problem of understanding the Riemannian geometry of these manifolds, which is the main question addressed in this paper. We prove, for example, that on a manifold with a Lie structure at infinity the curvature tensor and its covariant derivatives are bounded, by extending the Levi-Civita connection to an A-valued connection where the bundle A is uniquely determined by the Lie algebra V . We study a generalization of the geodesic spray and give conditions for these manifolds to have positive injectivity radius. We also prove that the geometric operators are generated by the given Lie algebra of vector fields. An important motivation for our study is to prepare the ground for the investigation of the analysis of geometric operators on manifolds with a Lie structure at infinity. The simplest examples of manifolds with a Lie structure at infinity are the manifolds with cylindrical ends. For these manifolds the corresponding analysis is that of totally characteristic operators on a compact manifold with boundary equipped with a “b-metric.”

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Pseudodifferential Operators on Manifolds with a Lie Structure at Infinity

Several interesting examples of non-compact manifolds M0 whose geometry at infinity is described by Lie algebras of vector fields V ⊂ Γ(M ;TM) (on a compactification of M0 to a manifold with corners M) were studied by Melrose and his collaborators for instance in [31, 34, 51]. In [1], the geometry of manifolds described by Lie algebras of vector fields – baptised “manifolds with a Lie structure...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004